номинальная ставка по кредиту 20 инфляция 13 определить реальную процентную ставку

Что такое реальная процентная ставка: формула расчета и варианты применения

Как вы считаете, 20 % годовых по вкладу в банке или инвестициям в ценные бумаги – это много или мало? Чтобы ответить на вопрос, надо сравнить цифру с инфляцией в стране. Если цены растут на 25 % в год, то ваша доходность превращается в обесценивание капитала. Инфляция ее просто “съедает”. Если инфляция равна 5 %, то вы получаете неплохой рост своих денег.

В приведенном примере речь шла о разных процентных ставках, которые надо учитывать при планировании личных финансов. Рассмотрим, что такое реальная процентная ставка, как она рассчитывается и где используется.

Виды процентных ставок

Реальная процентная ставка – это ставка с учетом текущей или прогнозной инфляции в зависимости от цели расчета. Само название намекает, что процент отражает реальную картину с нашим доходом, а не ту, что нарисована на бумаге.

В этом ключе рассматривается еще одна ставка – номинальная. Она отличается от реальной как раз тем, что не учитывает инфляцию. Например, по вкладу банк обещает 5 % годовых. Это номинальная ставка. За год инфляция составила 4,5 %. Получается, что вы заработали 5 %, но при этом на 4,5 % у вас обесценились деньги. Реальная ставка составила всего 0,5 %.

Вы можете самостоятельно определить свой фактический доход или платеж, если хотите учесть обесценивание денег. Проблем не будет, если вы оцениваете свою доходность уже по итогам инвестирования или депонирования средств в банке. Все величины известны, и результат точно покажет, что дали вам ваши вложения.

Но инвестору или вкладчику неинтересны прошлые оценки. Ему надо знать, выгодно или нет вкладывать деньги на текущих условиях, но на несколько лет вперед. И одна величина в таком случае будет всегда прогнозной – уровень инфляции. Никто не сможет вам ее назвать и дать 100 % гарантию, что прогноз сбудется. Остается только принять к сведению мнение экспертных органов. Например, Минэкономразвития России прогнозирует инфляцию до 2030 г. по трем сценариям.

Уже сейчас видно, что специалисты ошиблись в прогнозах как минимум на 2021 г. Это и понятно, ведь разве кто-то мог представить, что не только российская, но и экономики развитых стран в 2020 г. возьмут паузу. Коронавирус внес свои коррективы.

Формула Фишера

Зависимость номинальной и реальной ставок математически описал американский экономист Ирвинг Фишер. Формула расчета:

Реальная процентная ставка = (Номинальная процентная ставка –

– Уровень инфляции) / (100 + Уровень инфляции) * 100 %

Реальная процентная ставка = (1 + Номинальная процентная ставка) /

/ (1+ Уровень инфляции) – 1

Поясню на примере. Предположим, что у вас есть 100 000 руб. Сегодня вы можете купить на нее определенный объем товара А. Вы кладете деньги на вклад под 3,2 % годовых (условия по вкладу “Сохраняй” от Сбербанка). Через год банк начислил вам проценты, сумма превратилась в 103 200 руб. А цены на тот же объем товара А выросли в соответствии с инфляцией в стране на 5,5 %. Следовательно, в конце года товар А стоит уже 105 500 руб.

После закрытия вклада и вывода денег со счета вы можете купить уже меньше товара А, чем в начале года: около 97,82 % (103 200 / 105 500 * 100 %). Покупательная способность денег сократилась на: 100 % – 97,82 % = 2,18 %. То есть вложение денег в Сбербанк привело к потере в 2,18 %.

Применим цифры из нашего примера к формуле Фишера и проверим расчеты:

Реальная процентная ставка = (3,2 – 5,5) / (100 + 5,5) * 100 % = –2,18 %

Часто используют и упрощенную формулу, когда из номинальной ставки просто вычитают уровень инфляции и получают реальный процент. В начале статьи мы как раз ее и применили. При небольших темпах инфляции результат будет почти точным, отличается на десятые доли процента. Но при большом уровне инфляции лучше воспользоваться формулой Фишера. Она ярко иллюстрирует связь между инфляцией, номинальным и реальным процентом именно в странах с нестабильной экономикой.

Где применяется реальная процентная ставка

Везде, где ожидается доход или производится платеж, выраженный в процентах, можно рассчитать реальную процентную ставку. Это не сделает за вас банк или брокер. Процент, который вы увидите в кредитном договоре, договоре на открытие депозита или брокерском отчете, будет номинальным.

Кредиты

Реальную процентную ставку не рассчитывают по кредиту, хотя она точно так же работает при кредитовании, как и при получении дохода, и даже может внушить заемщику чуть больше оптимизма. Например, сегодня вы взяли кредит под 10 % годовых, а в стране прогнозируется инфляция в 4 % в ближайшие 3–5 лет. Значит, ежегодно ваша реальная ставка будет меньше номинальной на эти 4 %. Это ли не повод для радости?

Представьте, что ежемесячно вы вносите 30 000 руб. в счет погашения кредита. Со временем фактический платеж будет “дешеветь”, потому что 30 000 руб. через 5–10 лет – это не те же 30 000 руб. сегодня, а значительно меньше за счет обесценивания денег. Еще лучше, если у вас получится рефинансирование под меньший процент, тогда эффект будет еще сильнее.

Большее распространение расчет реальной ставки получил при определении доходности вложений: в инвестициях или банковских депозитах.

Инвестиции

Для инвестора большую ценность имеет реальный, а не номинальный процент, который поможет определить доходность от инвестирования в различные инструменты. Например, при выборе облигаций в карточке конкретного инструмента вы увидите сразу несколько видов доходности, но все они номинальные.

Чтобы определить реальную доходность, надо воспользоваться формулой Фишера. По облигациям в ней будет только одна прогнозная величина, которая может исказить картину в будущем, – это инфляция. А другой важный параметр точно известен на несколько лет вперед – купонный доход. В примере выше срок погашения облигации ОФЗ-26207-ПД наступит только в 2027 году. Ежегодный купонный доход на все эти годы составит 8,15 % годовых.

По акциям ситуация другая. Будущее мы можем определить только на основе прогнозных значений доходности и инфляции. Всем инвесторам известно правило, что доходность в прошлом не является гарантией ее получения в будущем. Поэтому прогнозировать на основе значений, полученных в предыдущие годы, – неблагодарное занятие. Остается только фундаментальный анализ компании. Но в любой грамотно проведенный анализ может вмешаться случай и обесценить все сделанные выводы.

Это не значит, что реальную доходность вообще не надо учитывать. Для долгосрочного инвестора определить эффективность своих вложений в тот или иной инструмент можно и по итогам года на основе фактически полученных значений. Если на протяжении 2–3 лет вы получаете отрицательную реальную доходность, то, наверное, стоит пересмотреть свой портфель и инвестиционную стратегию.

Депозиты

Не обольщайтесь, когда в очередном рекламном ролике от банка вы увидите приятные глазу проценты по депозиту. Это всего лишь ваш будущий номинальный доход, который может показаться уже не таким привлекательным, когда вы рассчитаете реальный с поправкой на инфляцию.

При расчете реальной доходности депозита вы будете, аналогично облигациям, оперировать не к прогнозной инфляции, а к известному проценту, который указан в договоре. Хорошо, когда экономика страны стабильна на протяжении нескольких лет подряд, а деньги обесцениваются в пределах 1–2 %. Тогда легко рассчитать и свою фактическую прибыль от хранения капитала на депозите. Но эта история не про Россию. Наши граждане видели инфляцию в 4 и 2 500 %, поэтому легко получить нулевую или отрицательную доходность.

Простой пример. Вы положили в банк 1 000 000 руб. на 1 год под 4 % годовых. Инфляция в мае 2021 г. составила 6 % в годовом исчислении. К концу года Банк России ее прогнозирует в районе 5,4–5,8 %. Допустим, что величина составит 5,8 %. Рассчитаем доход вкладчика:

Покупательная способность ваших денег сократилась на 1,70 % или на 14 200 руб.

Заключение

После этой статьи скажите нам, пожалуйста, почему большинство наших сограждан продолжает нести свои деньги в банк? Мы поняли бы это, когда нет других альтернатив. Но сейчас…

Если единственная причина – это надежность вкладов, то почему бы тогда не купить ОФЗ или корпоративные облигации таких компаний, как Сбербанк, ВТБ или Газпром. Дефолт им пока не грозит, а доходность выше, чем по депозиту. Останавливает, что нужен брокерский счет? Его открыть – дело 5 минут. Пишите, какие еще у вас есть аргументы, чтобы не инвестировать.

Источник

Тема 7. Специальные вопросы финансового менеджмента

Цель практикума по данной теме — сформировать навык решения задач по управлению финансами предприятия в условиях инфляции, по оценке вероятности банкротства, ознакомить с подходами к оценке бизнеса.

Методические указания

Приступая к рассмотрению примеров и самостоятельному решению задач, необходимо внимательно прочесть контент по соответствующему вопросу темы. Базовая концепция в данной теме — это концепция временной ценности денег, концепция компромисса между риском и доходностью. Важнейшие понятия: инфляция, уровень, темп и индекс инфляции, финансовое состояние, финансовая несостоятельность, банкротство, финансовая реструктуризация, стоимость предприятия, стоимость бизнеса. Эти понятия следует выучить и разобраться в их соотношениях.

Эта тема является завершающей. Поэтому здесь представлены задачи, затрагивающие вопросы предшествующих тем.

В решении задач используются формулы, объяснение которых представлено в контенте. Для облегчения поиска необходимых разъяснений в контенте нумерация формул и обозначения в практикуме такие же, как и в контенте.

7.1. Финансовый менеджмент в условиях инфляции

В данном параграфе используются следующие обозначения:

d — ставка доходности, %;

7 1— минимальная допустимая доходность, %;

7 2— безрисковая доходность, %;

F (FV) — будущая (наращенная) стоимость, ден. ед.;

7 3— индекс инфляции, %;

P (PV) — настоящая (дисконтированная) стоимость, ден. ед.;

r — реальная ставка доходности, %;

7 4— ставка с учетом инфляции (номинальная), %;

7 5— минимально допустимая доходность, %;

7 6— темп инфляции, %;

trV — прирост стоимости (сумма полученных процентов), ден. ед.

В некоторых задачах вводятся дополнительные обозначения.

Задача 7.1.1.

Минимально необходимая доходность 12 % годовых. Темп инфляции 11 %. Какова должна быть номинальная ставка?

Методические указания: использовать формулу (7.1.10).

Дано:

7 7

7 8

Решение:

Ставка доходности играет роль ставки дисконтирования (d = r).

Воспользуемся формулой Фишера (7.1.10):

7 9

Ответ: Номинальная ставка должна быть не ниже 24,32 %.

Задача 7.1.2.

Определить номинальную ставку процентов для финансовой операции, если уровень эффективности должен составлять 7 % годовых, а годовой уровень инфляции составляет 22 %.

Методические указания: использовать формулу (7.1.10).

Дано:

7 10

Решение:

Номинальная ставка процентов определяется по формуле Фишера:

7 12

7 11

Ответ: Номинальная ставка составляет 30,54 % при реальной ставке 7 %.

Задача 7.1.3.

Вклады принимают под 14 %. Какова их реальная доходность при инфляции 11 %?

Методические указания: использовать формулу (7.1.10).

Дано:

7 13

Решение:

Воспользуемся формулой Фишера (7.1.10), из которой следует:

7 14

Заметим, что реальная доходность меньше, чем простая разность процентной ставки и темпа инфляции:

7 15

Ответ: Реальная доходность составляет 2,7 %.

Задача 7.1.4.

Ожидаемый темп инфляции 2 % в месяц. Определить квартальный и годовой темп инфляции.

Методические указания: 1) использовать формулы (2.1.7) и (2.1.9);

2) ввести обозначения: 7 16— темп инфляции в месяц, 7 17— темп инфляции в квартал, 7 18— годовой темп инфляции.

Дано:

7 19

Решение:

Квартальный темп инфляции рассчитаем на основе формулы для нахождения эффективной ставки процента:

7 20

Годовой темп инфляции можно рассчитать двумя способами:

1) используя темп инфляции в месяц:

7 21

2) используя темп инфляции в квартал:

7 22

Ответ: Квартальный темп инфляции 6,12 %, годовой темп инфляции 26,82 %.

Задача 7.1.5.

Определить реальную доходность при размещении средств на год под 14 % годовых, если уровень инфляции за год составляет 10 %.

Методические указания: 1) использовать формулу (7.1.10).

Дано:

7 23

Решение:

Формула пересчета реальной доходности:

7 24

Ответ: Реальная доходность составляет 3,63 % годовых.

Задача 7.1.6.

Клиент вкладывает в банк на год 20 тыс. р., инфляция составляет 18 %. Клиент хочет, чтобы его вклад принес 6 % годовых дохода. Под какой процент клиент должен сделать вклад?

Методические указания: использовать формулу (7.1.10).

Дано:

7 25

Решение:

Годовая ставка сложных процентов, обеспечивающая реальную доходность кредитной операции, определяется по формуле Фишера:

7 26

Ответ: Чтобы получить годовой доход в размере 6 % годовых, ставка по кредиту с учетом инфляции должна быть не менее 25,08 %.

Задача 7.1.7.

Клиент вкладывает в банк на год 20 тыс. р. под 6 % годовых, инфляция составляет 18 %. Какой результат получит вкладчик от данной операции?

Методические указания: использовать формулы (2.1.1), (2.1.3) и (7.1.10).

Дано:

7 27

Решение:

1. Номинальная наращенная сумма (будущая стоимость):

7 28

2. Номинальные начисленные проценты:

7 29

Реальная наращенная сумма:

7 30

3. Реальные проценты:

7 31

Ответ: Номинально (счетно) клиент получает 1200 р. дополнительно к своим 20 тыс. р. Однако обесценивание денег в результате инфляции приводит к тому, что реальная ценность полученной суммы меньше вложенной на 2033,9 р.

Задача 7.1.8.

Темпы инфляции в ближайшие 5 лет прогнозируются по годам следующим образом: 14 %, 12 %, 8 %, 7 %, 5 %. Как изменятся цены за пятилетие?

Методические указания: 1) использовать формулы (7.1.5) и (7.1.6);

Дано:

7 37

Решение:

Индекс цен за 5 лет рассчитывается как произведение годовых индексов:

7 38, а годовой индекс, в свою очередь, равен: 7 39, отсюда

7 40

Таким образом, за пятилетие цены возрастут в 1,55 раза, или на 55 % (для сравнения рассчитаем простую сумму темпов инфляции, которая оказывается существенно ниже рассчитанной:

14 + 12 + 8 + 7 + 5 = 46 Ситуация 1. Учет ведется в неизменных ценах (по себестоимости).

Поскольку хозяйственных операций не совершалось, активы и пассивы фирмы не изменятся, а балансовое уравнение на конец периода будет выглядеть следующим образом:

Инфляционная прибыль равна нулю (Пи = 0), поскольку влияние инфляции не отражено в учете и отчетности.

Ситуация 2. Учет ведется в денежных единицах одинаковой покупательной способности (методика GPL), с учетом общего индекса цен.

Здесь возможны два варианта рассмотрения. В первом варианте предполагается пересчет немонетарных активов с учетом индекса цен. Балансовое уравнение примет вид:

МА + НА kr(1 + Ti) = СК + НАkrTi + МО

12 + 85 kr(1 + 0,12) = 30 + 85kr0,12+67

Полученное изменение НА krTi=85 kr0,12=10,2 млн р. может трактоваться как изменение капитала собственников (trСК — дооценка внеоборотных активов) и соответственно как инфляционная прибыль (Пи).

Второй (более строгий и методологически правильный) вариант предполагает учет влияния инфляции путем сопоставления монетарных активов и монетарных обязательств. Такой подход обусловливается тем, что монетарные обязательства в условиях инфляции приносят косвенный доход, а монетарные активы — косвенный убыток. В этом варианте балансовое уравнение будет иметь следующий вид:

МА + НА kr(l + Ti) = МО + СКkr(1+ Ti) + Ti kr(МО — МА)

12 + 85 kr1,12 = 67 + 30 kr1,12 + 0,12 kr(67 — 12)

12 + 95,2 = 67 + 33,6 + 6,6

Вследствие инфляции величина авансированного капитала увеличилась на:

trБ = Б1 — Б0 = 107,2 — 97,0 = 10,2 млн р.

Однако не весь рост произошел за счет самовозрастания величины собственного капитала из-за обесценения рубля, а именно:

trСК = 33,6 — 30 = 3,6 млн р.

За счет превышения монетарных обязательств над монетарными активами получена инфляционная прибыль:

Пи = Ti kr(МО — МА) = 0,12 kr(67 — 12) = 6,6 млн.р.

Ситуация 3. Учет ведется в текущих ценах (методика ССА) с использованием индивидуальных индексов цен.Балансовое уравнение имеет следующий вид:

В нашем случае, поскольку индивидуальные индексы цен всех немонетарных активов одинаковы, это уравнение примет вид:

12 + 85 kr1,18 = 30 + 67 + 85 kr0,18

Полученный в результате изменения цен условный доход может трактоваться либо как инфляционная прибыль, либо как инфляционное приращение капитала:

7 82

Пи = 112,3 — 97,0 = 15,3 млн р.

Ситуация 4. Учет ведется в текущих ценах и денежных единицах одинаковой покупательной способности (комбинированная методика), балансовое уравнение имеет следующий вид:

7 83

В этой модели отражается как влияние инфляции, так и изменение цен на конкретные виды активов, продукции и товаров.

Вследствие инфляции и роста цен на активы данного предприятия величина авансированного капитала увеличилась на:

trБ = Б1 — Б0 = 112,3 — 97,0 = 15,3 млн р.

в том числе за счет самовозрастания величины собственного капитала, обеспечивающего сохранение его покупательной способности на:

trСК = 30 kr1,12 — 30 = 3,6 млн р.;

за счет относительного изменения цен на активы предприятия по сравнению с уровнем инфляции — на:

trНА = НА kr(r — Ti) = 85 kr(0,18 — 0,12) = 5,1 млн р.,

за счет превышения монетарных обязательств над монетарными актива?ми — на:

tr(МО — МА) = Ti kr(МО — МА) = 0,12 kr(67-12) = 6,6 млн р.

Таким образом, общее приращение авансированного капитала составило:

trБ = trСК + trНА + tr(МО — МА) = 3,6 + 5,1 + 6,6 = 15,3 млн р.

Последние два приращения можно трактовать как инфляционную прибыль и рассчитывать по формуле

Пи = trНА + tr(МО — МА) = 5,1 + 6,6 = 11,7 млн р.

Ответ: 1) в случае ведения учета в неизменных ценах инфляционная прибыль равна нулю; 2) в случае ведения учета в денежных единицах одинаковой покупательной способности с учетом общего индекса цен инфляционная прибыль равна 6,6 млн р. (в качестве инфляционной прибыли может быть рассмотрен весь прирост капитала 10,2 млн р.); 3) в случае ведения учета в текущих ценах с использованием индивидуальных индексов цен инфляционная прибыль равна 15,3 млн р.; 4) в случае ведения учета в текущих ценах и денежных единицах одинаковой покупательной способности инфляционная прибыль равна 11,7 млн р.

Задача 7.1.16.

Прогнозируемое значение среднемесячного темпа роста цен — 3 %. За какой период времени деньги обесценятся: а) в 2 раза, б) в 3 раза?

Методические указания: 1) использовать формулы (7.1.5) и (7.1.6);

2) ввести обозначения: 7 84 однодневный темп изменения цен; n — число дн.; k — количество раз, в которое обесцениваются деньги; 3) чтобы некоторая сумма обесценилась в k раз, значение коэффициента падения покупательной способности денежной единицы должно быть равно 1/ k или, что то же самое, индекс цен должен быть равен k.

Дано:

Решение:

Найдем однодневный темп инфляции (в месяце 30 дн.).

7 85

Таким образом, однодневный темп инфляции составляет 0,0986 %, т. е. ежедневно цены увеличиваются на 0,0986 %, что приводит к увеличению цен за год на 42,6 %. Из формулы (24.8) следует: чтобы некоторая сумма S обесценилась в k раз, значение коэффициента падения покупательной способности денежной единицы должно быть равно 1/ k или, что то же самое, индекс цен должен быть равен k.

Исходная сумма обесценивается в 2 раза (k = 2):

7 86. Отсюда искомое число дн. n = 703 дн.

Исходная сумма обесценивается в 3 раза (k = 3):

7 87. Отсюда искомое число дн. n =1115 дн.

Ответ: При среднемесячном темпе инфляции 3 % любая исходная сумма, находящаяся без движения, например, омертвленная в виде денег как запас средств, обесценится вдвое через 703 дн., т. е. примерно через 1,9 года, а в 3 раза — через 1115 дн., т. е. через 3 года.

Задачи для самостоятельного решения

Задача 7.1.17.

Минимально необходимая доходность 15 % годовых. Темп инфляции 10 %. Какова должна быть номинальная ставка?

Методические указания: использовать формулу (7.1.10).

Задача 7.1.18.

Ожидаемый темп инфляции 3 % в месяц. Определить квартальный и годовой темп инфляции.

Методические указания: 1) использовать формулы (2.1.7) и (2.1.9);

2) ввести обозначения: 7 88— темп инфляции в месяц, 7 89— темп инфляции в квартал, 7 90— годовой темп инфляции.

Задача 7.1.19.

Можно купить пакет бескупонных облигаций за 6 тыс. р. Срок погашения облигаций 2 года. Номинальная цена пакета 12 тыс. р. Ожидаемый темп инфляции 11 %. Стоит ли купить пакет облигаций, если нужен реальный доход не менее 5 %?

Методические указания: 1) использовать формулы (2.1.7) и (7.1.10);

2) ввести обозначения: P — настоящая стоимость пакета облигаций, n — срок погашения облигаций, N — номинал пакета облигаций.

Задача 7.1.20.

Определить номинальную ставку процента для финансовой операции, если уровень эффективности должен составлять 8 % годовых, а годовой уровень инфляции составляет 13 %.

Методические указания: использовать формулу (7.1.10).

Задача 7.1.21.

Клиент вкладывает в банк на год 20 тыс. р. инфляция составляет 14 %, клиент хочет, чтобы его вклад принес 7 % годовых дохода. Под какой процент клиент должен сделать вклад?

Методические указания: 1) использовать формулу (7.1.10).

Задача 7.1.22.

Темпы инфляции в ближайшие 4 года прогнозируются по годам следующим образом: 14 %, 12 %, 10 %, 9 %. Как изменятся цены за 4 года?

Методические указания: 1) использовать формулы (7.1.5) и (7.1.6);

Задача 7.1.23.

Вклады принимают под 11 %. Какова их реальная доходность при инфляции 13 %?

Методические указания: использовать формулу (7.1.10).

Задача 7.1.24.

Определить реальную доходность при размещении средств на год под 13 % годовых, если уровень инфляции за год составляет 12 %.

Методические указания: использовать формулу (7.1.10).

Задача 7.1.25.

Клиент вкладывает в банк на год 20 тыс. р. под 10 % годовых, инфляция составляет 12 %. Какой результат получит вкладчик от данной операции.

Методические указания: 1) использовать формулы (2.1.1), (2.1.3), (7.1.10).

Задача 7.1.26.

Следует ли принять данный проект?

Методические указания: 1) использовать формулы (2.1.7), (2.5.13) и (7.1.8);

2) ввести обозначения: n — срок реализации проекта, 7 96— бета-коэффициент, 7 97— средняя рыночная доходность, 7 98— номинальная доходность проекта, d — реальная доходность проекта, 7 99— премия за риск, 7 100— максимально приемлемые вложения, 7 101— доходность с учетом инфляции, 7 102— минимальный приемлемый доход.

Задача 7.1.27.

Оценить прогнозный годовой темп инфляции, если известно, что прогнозный месячный темп инфляции составляет 3 %.

Методические указания: использовать формулы.

Задача 7.1.28.

В объект инвестирования на 2 года вкладывается 1 млн р. Через 2 года инвестор получит от этого объекта 2 млн р. Прогнозируемый среднегодовой темп инфляции равен 13 %. Оценить реальный доход, получаемый инвестором, и финансовые потери, вызванные инфляцией.

Методические указания: использовать формулы.

Задача 7.1.29.

Инвестору предлагается вложить в объект инвестирования 8 млн р. Через 2 года в соответствии с бизнес-планом он может получить 12 млн.р. Прогнозируемый среднегодовой темп инфляции 13 %. Оценить целесообразность инвестирования средств в данный объект, если инвестора устроит реальный доход не менее 2,5 млн.руб.

Методические указания: использовать формулы.

Задача 7.1.30.

Прогнозируемое значение среднемесячного темпа роста цен — 4 %. За какой период времени деньги обесценятся: а) в 2 раза, б) в 3 раза?

Методические указания: использовать формулы.

7.3. Банкротство и финансовая реструктуризация

Методические указания: Рассмотреть различные методики диагностики банкротства на примере одного предприятия, баланс и отчет о прибылях и убытках которого представлен в табл. 7.3.1 и 7.3.2.

Расчетные формулы записать с помощью номеров строк баланса или отчета о прибылях и убытках (например, «с. 250(1)» означает объем краткосрочных финансовых вложений, а «с. 010(2)» — выручка). Значение коэффициентов на начало и конец года обозначить буквами «н» и «к», заключенными в скобки.

Таблица 7.3.1 — Данные бухгалтерского баланса предприятия «ФМ», тыс. р.

Источник

Юридический портал vladimir-voynovich.ru
Adblock
detector